
Intracellular Signaling by Growth Factors 

Klaus Seedor f  

Growth factors are involved in a variety of cellular responses such as growth, differentiation, migration, metabolism, and 
transformation. Binding of the growth factor tO its corresponding cell surface receptor results in activation of the receptor's 
intrinsic tyrosine kinase activity, and subsequently in activation of complex multistep signal transduction cascades. Activation 
of these interconnected signaling pathways eventually leads to a biological response, which involves changes in gene 
expression and protein synthesis. The biological response has been shown to be receptor-specific and also cell-type 
(tissue)-specific, indicating that various receptors activate distinct signal transduction pathways in one tissue and that one 
receptor activates different pathways in various tissues. What determines receptor specificity and tissue specificity? In this 
context, this article will focus on certain receptors with intrinsic tyrosine kinase activity, including receptors for platelet-derived 
growth factor (PDGF), epidermal growth factor (EGF), insulin, and nerve growth factor (NGF}. 
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RECEPTOR TYROSINE KINASES 

G ROWTH FACTOR receptors, also called receptor 
tyrosine kinases (RTKs), comprise a large family of 

receptors with more than 50 members. They all share a 
similar molecular topology: a large, glycosylated extracellu- 
lar ligand-binding domain, a single hydrophobic transmem- 
brane region, and an intracellular domain that can be 
further divided into the juxtamembrane region, a tyrosine 
kinase domain that contains the catalytic activity, and the 
carboxy-terminal tail. ~ On the basis of sequence similarity 
and distinct structural characteristics, RTKs have been 
divided into more than 12 subclasses. The EGF receptor 
(EGF-R) belongs to the subclass receptors. They are 
monomeric and contain two cysteine-rich clusters in the 
extracellular domain and a src-like tyrosine kinase domain 
in the cytoplasmic portion. Subclass 2 receptors include the 
insulin (IR) and insulin-like growth factor-I (IGF-I-R) 
receptors. They have a heterotetrameric structure contain- 
ing two a- and two [3-subunits that are linked by disulfide 
bonds. The a-subunit contains one cysteine-rich cluster, 
and the [3-subunit harbors the catalytic activity. The PDGF 
receptors (PDGF-R), termed PDGFcx-R and PDGFB-R, 
are members of subclass 3 receptors. They share extensive 
sequence homology and have the same configuration of 
structural domains. The extracellular domain contains five 
immunoglobulin-like repeats, and the cytoplasmic region 
has a tyrosine kinase domain that is interrupted by a kinase 
insertion sequence. Two distinct classes of proteins have 
been identified as receptors for NGF: the p75 LNGF protein, 
which binds NGF with low affinity and lacks tyrosine kinase 
activity, and the NGF receptor (NGF-R), encoded by the 
Trk gene. The NGF-R (subclass 7) contains a cytoplasmic 
tyrosine kinase domain; however, no obvious structural 
elements have been identified in the extracellular region 3 
(Fig 1). 
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RTK-MEDIATED SIGNAL TRANSDUCTION 

Tyrosine-mediated cellular signals are generated by bind- 
ing of a specific ligand to the extracellular part of a RTK,  
followed by receptor dimerization and tyrosine phosphory- 
lation of the cytosolic part: This triggers the recruitment of 
substrates with src homology 2 (SH2) domain to specific 
phosphotyrosine residues, and leads to the assembly of 
these primary signal transfer factors at the inner surface of 
the plasma membrane in proximity to molecules involved in 
subsequent steps of signal transduction. The protein: 
protein interaction mediated by SH2 domains and phos- 
phorylated-tyrosine residues is an essential feature of 
signaling by RTKs. 4 The crystal structure of the SH2 
domain showed two defined pockets that complex tightly 
with peptides containing phosphotyrosine and flanking 
amino acids. 5 Of special importance is the third amino acid 
that follows the tyrosine residue to determine SH2 binding 
specificity. For example, the binding motif YMXM has 
been shown to be a high-affinity binding site for the p85 
phosphatidylinositol-3-OH kinase (PI3-kinase) subunit, 
whereas the YVNI motif preferentially binds to the SH2 
domain of GRB-2. It has therefore been suggested that 
activation of specific pathways is determined by the recep- 
tors' ability to interact with a certain set of SH2 domain- 
containing proteins. Several substrate interaction sites on 
RTKs such as PDGF-R, EGF-R, NGF-R/Trk, and IR 
substrate-1 0RS-1), the main docking protein for SH2 
domain-containing proteins involved in IR- and IGF-I-R- 
mediated signal transduction, have been identified. The 
PDGF-R tyrosine phosphorylation sites Y-1021 and Y-1009, 
located in its carboxy terminus, are binding sites for 
phospholipase C gamma (PLC~) and PTP 1D/Syp/SHPTP2, 
respectively. Y-771 in the kinase insertion domain binds the 
ras-GTPase-activating protein (GAP), and Y-740 and Y-751 
represent binding sites for p85/PI3-kinase and nck. The 
closely related cytoplasmic tyrosine kinases src, fyn, and yes 
bind to Y-579 and Y-581 in the PDGF-R juxtamembrane 
region.3, 6 

The EGF-R has five tyrosine residues (Y-992, Y-1068, 
Y-1086, Y-1148, and Y-1173) within the carboxy-terminal 
tail that are phosphorylated upon ligand-mediated receptor 
activation. These tyrosine residues mediate binding of 
PLC% GAP, Syp /PTP1D/SHPTP2 ,  p85/PI3-kinase, SHC, 
GRB-2, GRB-7, and nck. T M  In contrast to the PDGF-R, in 
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Fig 1. Schematic representation of RTK subclasses. Structural 
elements: cysteine-rich clusters {[]}, tyrosine kinase domains (D), and 
immunoglobulin-like domains (semicircles). 3 

which every single phosphorylated tyrosine residue medi- 
ates specific binding of a certain SH2 domain-containing 
protein, the EGF-R autophosphorylation sites are highly 
flexible in their capacity to mediate association of SH2- 
containing substrates. 15 

For the NGF-R, Y-490, in the juxtamembrane region, 
Y-752 in the kinase core domain, and Y-785 in the short 
carboxy terminus of Trk are the interaction sites for SHC, 
p85/PI3-kinade, and PLC% respectively. 16-18 

The IR is phosphorylated on seven tyrosine residues 
(Y-953, Y-960, Y-1146, Y-1150, Y-1151, Y-1316, and 
Y-1322) in response to insulinY 9 Tyrosine 960, located in 
the juxtamembrane region, has been shown to be important 
for IRS-1 phosphorylation on tyrosine residues and for 
insulin-mediated signal transduction. 19,2° Phosphorylation 
of Y-1146, Y-1150, and Y-1151 correlates with activation of 
the receptors' intrinsic tyrosine kinase activity, and it has 
recently been shown that tyrosine 1150 is bound in the 
active catalytic site, leading to autoinhibition of kinase 
activity. 21 Interestingly, this tyrosine residue is conserved in 
all RTKs, suggesting a common autoinhibitory function. 
The role of tyrosine 1316 and 1322, located in the carboxy 
terminus, is not fully understood. In contrast to other 
RTKs, none of the IR autophosphorylation sites have been 

shown to be binding sites for SH2 domain-containing 
proteins to date. A number of cellular substrates for the IR 
have been identified. These include IRS-1, 22 SHC, 23 focal 
adhesion kinase, 24 pp62, 25 and two distinct pp60 proteins, 
which can be distinguished by their ability to bind either 
PD-kinase or GAP. 26 IRS-1 contains 22 potential tyrosine 
phosphorylation sites, of which at least eight are phosphory- 
lated by the activated IR. These phosphorylated tyrosine 
residues have been shown to be binding sites for SH2 
domain-containing proteins like the p85/Pi3-kinase sub- 
unit (Y-460, Y-608, and Y-939), Syp/PTP1D/SHPTP2 
(Y-1172), GRB-2 (Y-895), nck and crk, 27 and PLCv and 
GRB-7 (K. Seedorf and A. Ullrich, unpublished results, 
August 1993). 

The PDGF-R, EGF-R, NGF-R, and IR have been shown 
to activate extracellular signal-regulated kinases, also known 
as mitogen-activated protein (MAP) kinases. 28,29 How they 
mediate activation of MAP kinases has been partially 
elucidated recently. 3°-38 The EGF-R binds, in its activated 
form, GRB-2, thereby linking the receptor to the guanine 
nucleotide-exchange protein, son of sevenless (SOS), 39 
which replaces ras-bound GDP by GTP, resulting in activa- 
tion ofras. The GTP-binding protein ras has been shown to 
interact with raf,,40 a serine threonine kinase that, upon 
activation, activates the MAP kinase kinase (MEK), which 
finally activates MAP kinase. 4I The IR phosphorylates 
IRS-1, thereby allowing binding of the GRB-2-SOS com- 
plex to IRS-I, resulting in ms, raf MEK, and MAP kinase 
activation. The NGF-R does not bind GRB-2; however, it 
binds and phosphorylates SHC on tyrosine residues, allow- 
ing the GRB-2-SOS complex to interact with SHC via the 
GRB-2 SH2 domain. The EGF-R binds not only GRB-2 
but also SHC, suggesting the existence of two alternative 
pathways leading to MAP kinase activation. 42 The PDGF-R 
does not interact with GRB-2 or SHC. It has recently been 
shown that receptor-bound, tyrosine-phosphorylated Syp/ 
PTP1DSHPTP2 binds GRB-2, suggesting that this protein 
complex allows interaction with SOS and thereby activates 
ras. 43 Alternatively, the PDGF-R, as well as the IR, have 
been shown to phosphorylate SHC on tyrosine residues, 
resulting in the binding of GRB-2 and most likely in the 
activation of MAP kinase. A second, ras-independent 
pathway has been proposed that involves PLC~/and protein 
kinase C (PKC). Upon activation, PLCv catalyzes hydroly- 
sis of phosphatidylinositol-4,5-biphosphate (PIP2) into the 
second messengers diacylglycerol (DAG) and inositol tri- 
phosphate (IP3). IP3 induces the release of Ca 2+ from 
intracellular stores and, together with DAG, activates 
certain PKC isotypes. 44-46 Activated PKC is then able to 
activate ?'af~ 47,48 allowing activation of MEK and MAP 
kinase. 

The conservation and redundancy of MAP kinase activa- 
tion implies that this signaling pathway is highly important. 
MAP kinase has been shown to phosphorylate transcription 
factors and induce transcription of immediate early genes 
like c-los an d c-jun. It is involved in activation of glycogen 
synthase by phosphorylation of RSK $6 kinase, which 
phosphorylates protein phosphatase-1, which dephosphory- 
lates and thereby activates glycogen synthase? 1,49 Further- 
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more, it has recently become evident that MAP kinase- 
mediated phosphorylation of PHAS-1, which in its 
unphosphorylated form represses mRNA translation by 
complexing elongation factor 4E (elF-4E), causes the com- 
plex to dissociate, so that elF-4E can initiate translation. 5° 

Another serine threonine kinase, ribosomal p70s6k/ 
p85 s6k, is activated in response to various growth factors 
including PDGF, EGF, and insulin. $6 kinase phosphory- 
lates $6 protein, resulting in preferential translation of 
messenger RNAs containing a polypyrimidine tract at their 
5' end. The pathway that leads to p70S6k/p85 s6k activation is 
not understood. However, there is clear evidence that 
rapamycin inhibits $6 kinase activation in a specific man- 
ner, without inhibiting PI3-kinase activity. 51,52 These data 
suggest that the recently cloned mammal ian  target of 
rapamycin, 53 not PI3-kinase, is an important mediator of $6 
kinase activation. 

PI3-kinase interacts with a number of RTKs (eg, IR, K. 
Seedorf and A. Ullrich, unpublished results, August 1993; 
PDGF-, EGF-, and NGF-R), as well as with IRS-1, through 
its SH2 domain--containing p85-kd regulatory subunit, 
thereby activating the 110-kd catalytic subunit. 3 PI3-kinase 
catalyzes the phosphorylation at the D-3 position of the 
inositol ring of PI, PI(4)P, and PI(4.5)P2, generating PI(3)P, 
PI(3,4)P2, and PI(3,4,5)P3. These second messengers have 
been shown to play an important role in cell growth and 

metabolism54; however, the downstream targets are still 
unidentified. It has recently been shown that PI3-kinase is 
also a direct downstream target of ras 55 and that further- 
more it not only phosphorylates phosphoinositides but 
contains intrinsic protein serine kinase activity, which has 
been shown to phosphorylate its own p85 subunit 56 and, in 
addition, IRS-1 in an insulin-dependent fashion. 57 The 
mammalian catalytic domain of PI3-kinase is homologous 
to yeast Vps34, 58 a protein involved in protein sorting. It has 
therefore been speculated that PI3-kinase is involved in 
vesicle trafficking in mammalian cells. 59 The finding that 
PI3-kinase inhibitors block insulin-induced glucose trans- 
port (GLUT4 translocation) 6° supports this idea and indi- 
cates that PI3-kinase is part of the unsolved signaling 
pathway leading to glucose uptake. The role ofcrk,  nck, and 
Syp/PTPID/SHPTP2 in RTK-mediated signal transduc- 
tion is not yet understood. The current knowledge of IR 
signaling is summarized in Fig 2. 

CELL-TYPE-SPECIFIC SUBSTRATE INTERACTION 

The receptors for EGF, PDGF, insulin, NGF, and many 
others activate mitogenic pathways when expressed in 
NIH3T3 fibroblasts. Under physiological conditions, the 
biological response of these receptors is often different and 
far more complex. The IR is expressed on almost every cell 
type, and its major physiological function is to control 
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Fig 2. Summary of insulin-mediated signal transduction pathways, 
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metabolic processes such as glucose and lipid metabolism in 
muscle, fat, and liver tissue. 27 NGF is a peptide hormone 
that is essential for development and survival of sympa- 
thetic nerves and certain populations of nerves in the 
central nervous system. 6I PDGF is a potent mitogen acting 
on fibroblasts, smooth muscle cells, and glial cells. Recep- 
tors for PDGF also have been shown to be expressed on 
other cell types, including capillary endothelial and neuro- 
nal cells, and have been implicated as regulators of cell 
proliferation during development and in wound heal- 
ing. 62-64 The EGF-R mediates a mitogenic response in 
various cell types; however, the Drosophila melanogaster 
EGF-R homolog DER has been shown to be an essential 
regulator of embryogenesis. 65 These findings, together with 
the observation that certain SH2 domain-containing RTK 
substrates like GRB-7 and VAV show a specific tissue 
distribution, 2 suggest that specific RTKs mediate different 
functions in different tissues. This naturally would require 
that these receptors interact with a cell-type-specific subset 
of proteins in order to activate tissue-specific signal trans- 
duction pathways. This hypothesis was recently investigated 
by so-called association experiments. This method allows 
identification of specific receptor-binding proteins in cell 
lines that originate from various tissues (K. Seedorf and A. 
Ullrich, unpublished results, September 1993). To make 
this investigation completely comparable, chimeric recep- 
tors were used that are all composed of the extracellular 
domain of the EGF-R fused to the cytoplasmic portion of 
the PDGF-R, HER2, and IR, respectively, resulting in 
EP-R, HER1-2, and EIR. These chimeric receptors have 
been shown to be biologically active in response to EGF 66-68 
and, importantly for this comparative analysis, can all be 
immunoprecipitated by an antibody directed against the 
extracellular domain of the EGF-R. 

Association Experiments 

The protocol was as follows: (1) Transient overexpres- 
sion of RTK in 293 fibroblasts, (2) activation of RTK by 
addition of EGF for 5 minutes, (3) cell lysis and immunopre- 
cipitation of RTK using EGF-R-specific antibody, (4) 
stringent wash, (5) addition of 35S-methionine- labeled 
Triton X-100-soluble cell extracts originating from differ- 
ent tissues and incubation for 2 hours, (6) stringent wash, 
and (7) analysis by sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis. 

Results from this type of experimental design clearly 
demonstrated that different RTKs interact with the same, 
but also with tissue-specific, proteins in vitro, suggesting 
that RTKs expressed in various tissues are coupled to the 
same, but also to tissue-specific, pathways. The EIR chi- 
mera, for example, binds p85/pl10 Pf3-kinase from NIH3T3 
(fibroblast), BFS1 (skin sarcoma), G8 (myoblast), 3T3L1 
(preadipocyte), ASBXIV (lung carcinoma), and CaD2 
(mammary carcinoma) cell extracts and, in addition, uniden- 
tified proteins of 98, 50, 41, and 29 kd. In NIH3T3, G8, and 
3T3L1 ceils, but not in others, the EIR binds a protein with 
60 kd. Results for the EIR are summarized in Table 1. 

Table 1. Results of Association Experiments for the EIR 

Molecular Cell Type 
Weight 

(kd) NIH3T3 BFS1 G8 3T3L1 ASBXW CaD2 

200 - - + - - - 

110 + + +  + + +  + + +  + + +  + + +  + + +  

98 ++ ++ ++ ++ ++ ÷+ 
85 + + +  + + +  + + +  + + +  + + +  + + +  

6 5  - + - + + + +  + 

64 + + +  + + +  + + 

6 0  + + +  - + + - - 

55 + + +  + + +  + + +  + + +  + + +  + + +  

53 + + +  + + +  + + +  + + +  + + +  + + +  

4 8  +++ . . . . .  
4 4  - + + ÷  - + + + 

4 1  ++ ++ ++ ++ ++ ++ 
37 - + + + + + + 

33 - + + + +  + - 

29 + +  + +  + +  + +  + +  + +  

24 + +  - - + + +  + 

NOTE. Intensity of binding is indicated 

undetectable binding by - .  The 110- and 

shown to be the two subunits of PI3-kinase 

unpubl ished results). 

by the number  of + and 

85-kd proteins have been 

(K. Seedorf  and A. UIIrich, 

D U R A T I O N  OF S I G N A L  T R A N S D U C T I O N  

A comparison of the effects of two diverse growth factors, 
EGF and NGF, in responsive cells presented a dilemma. 
Whereas NGF treatment for several days results in growth 
arrest of PC12 pheochromocytoma cells and induces differ- 
entiation of these chromaffin-like cells to a sympathetic 
neuron-like phenotype, EGF acts as a mitogen on PC12 
cells. Although the biological effects of both growth factors 
are clearly different, no major differences with respect to 
substrate phosphorylation and induction of early response 
genes were detectable. 69 Recently, it has been shown that 
MAP kinase activation by NGF is sustained and leads to its 
nuclear translocation, whereas activation by EGF is tran- 
sient and does not lead to pronounced nuclear transloca- 
tion. 7° EGF may therefore be unable to initiate differentia- 
tion of PC12 cells, because activation of p42 MAP and p44 
MAP kinase is not maintained long enough to ensure entry 
of the active kinases into the nucleus in the amounts needed 
to initiate the transcriptional events required for differentia- 
tion. This suggests that the transient activation of MAP 
kinase by EGF does not result from downregulation at a 
step in the pathway that is common to NGF and EGF, and 
that rapid inactivation of the EGF response is likely to 
occur at a step that is near (or at) the level of the EGF-R. If 
this idea is correct, the prediction can be made that if 
inactivation of the EGF-R is slowed or prevented, EGF 
should promote differentiation of PC12 cells in a manner 
similar to NGF. This is indeed the case: PC12 cells with a 
50-fold overexpression of the wild-type EGF-R or an 
EGF-R desensitization-negative mutant no longer acted in 
response to EGF as a mitogen, but instead triggered 
differentiation of these cells. The activation of MAP kinase 
and MEK triggered by EGF was transient in both untrans- 
fected and overexpressing PC12 cells; however, the decline 
in overexpressing cells was slower, and after 90 minutes 
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MAP kinase and MEK activities remained fivefold higher in 
EGF-R mutant-expressing cells and threefold higher in 
wild-type EGF-R-expressing cells. In addition, the nuclear 
translocation of MAP kinase in EGF-R-overexpressing 
PC12 cells was just as striking as that induced by NGF. 
These results strongly suggest that the distinct effects of 
NGF and EGF on PC12 cell differentiation can be ex- 
plained by differences in the extent and duration of activa- 
tion of MAP kinase in response to the two factors, without 
involving a signal transduction pathway specific to NGF 
(F ig  3). 71 It is important to note that it has recently been 
shown that MAP kinase is not only required but also 
sufficient to induce differentiation of PC12 cells. 72 

FEEDBACK INHIBITION OF RTKs 

Binding of a ligand to its corresponding RTK triggers 
activation of pathways that ultimately lead to a biological 
response. 2,4,73 Since constitutive activation of these path- 
ways results in disturbance of normal cellular response 
mechanisms and ultimately cell transformation, internal 
control and negative feedback mechanisms are required. In 
addition, as in PC12 cells, there is increasing evidence that 
the duration of RTK activation is a important factor in 
determining the final biological response. The PKC system 
likely mediates such a regulatory role. 

The PKC serine/threonine kinases, a family of at least 12 
isoenzymes with distinct tissue-distribution characteristics, 
have been subdivided on the basis of different primary 
structures and enzymatic properties into Ca2+-dependent 
or conventional PKCs and Ca2+-independent or novel 
PKCs. 74 Extensive evidence is available for their involve- 
ment in control of cell proliferation, differentiation, and 

RTK 1 RTK 2 
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Fig 3. Schematic comparison of MAP kinase (MAPK)-mediated 
biological responses in PC12 cells, 

motility. 75 While certain PKC isotypes are activated by 
phorbol esters such as phorbol 12-myristate 13-acetate 
(TPA), their physiological ligand is the second messenger, 
D A G ,  44'45 a product of the phosphoinositide-specific PLC, 
whose ~/-subtype was shown to be activated by mitogens 
such as EGF and PDGF through receptor-mediated tyro- 
sine phosphorylation. 2 In addition to DAG, PLC-/-cata- 
lyzed hydrolysis of PIP2 yields IP3, a regulator of intracellu- 
lar Ca z+, which together with DAG fully activates certain 
PKC isoforms. 

Among its diverse effects on the physiology of cells, 44 
PKC was shown to phosphorylate and activate the serine/ 
threonine kinase raf-1, 47,48 which triggers the MAP kinase 
signaling pathway and ultimately leads to transcriptional 
activation of specific genes .  41,76 In addition to this positive 
influence on growth factor signals, PKC activation is known 
to downregulate the signaling potential of EGF-R and IR. 
Phosphorylation of the EGF-R at Thr 654 attenuates 
high-affinity EGF binding 77 and causes a decrease in 
EGF-stimulated tyrosine kinase activity and DNA synthe- 
sis. 78,79 Similarly, the signaling activity of the IR, which 
appears to be primarily phosphorylated on C-terminal 
serine and threonine residues, 8° is impaired after TPA 
treatment of some cell types due to a reduction of its 
tyrosine kinase activity, 81,82 whereas in other cells an activa- 
tion of RTK activity was observed. 83 Moreover, as recently 
shown, phorbol ester treatment of CHO cells overexpress- 
ing PKCc~ and the IR resulted in phosphorylation of the 
receptor on threonine and serine residues without an effect 
on tyrosine phosphorylation, but caused inhibition of insulin- 
stimulated PI3-kinase activity. 84 Interestingly, although the 
EGF-R and PDGF-R share common signaling pathways, 
they differ with respect to PKC-dependent negative feed- 
back mechanisms. Although TPA treatment of A431 cells 
blocks EGF-induced PI turnovery it does not inhibit that 
induced by PDGF, 86 suggesting differential regulation of 
RTKs by the PKC system within the same cell. 

In addition to its differential effects on receptor-ligand 
interactions and signal transduction, PKC has been impli- 
cated in receptor internalization and degradation. Chen et 
a187 identified a distinct region within the EGF-R C-terminus 
that appears to be required for ligand-dependent downregu- 
lation and degradation. Interestingly, the high-affinity bind- 
ing site for PLC-/, Tyr 992, is located within this region, 88 
which suggests that PKC activation via PLC~/-generated 
second messengers is involved in receptor downregulation. 
Nevertheless, the molecular signals that are involved are 
still poorly understood, and their interpretation is a matter 
of controversy. 

To elucidate the complex role of PKC in the cellular 
signaling network, we transiently overexpressed 293 fibro- 
blasts with either the EGF-R or the chimeric receptors 
EP-R, EIR, and HER1-2 (EGF-R/human EGF-R type 2 
[HER2] chimera) and investigated short- and long-term 
effects on RTK signaling parameters in the presence or 
absence of cotransfected PKC~. 

In the absence of PKCc~, TPA treatment results within 
minutes in decreased EGF-R and HER2 tyrosine phosphor- 
ylation, while PDGF-R and IR phosphorylation is upregu- 
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lated. These effects are not mediated by endogenous 
PKC-dependent RTK phosphorylation, but apparently by 
activation or inactivation of RTK-specific phosphatases, as 
indicated by neutralization of this short-term effect upon 
treatment of cells with sodium orthovanadate, a potent 
phosphatase inhibitor. In the presence of overexpressed 
PKCc~, all investigated RTKs formed a stable protein- 
protein complex with PKCc~ upon TPA treatment, which at 
the same time resulted in a mobility shift of the receptors. 
Under these experimental conditions, the TPA effect on 
RTK activity was not reversible by orthovanadate, indicat- 
ing that receptor phosphorylation on tyrosine residues is 
regulated by PKC-dependent phosphorylation on serine 
and threonine residues. Alternatively, binding of activated 
PKC to the receptor directly results in receptor inactiva- 
tion. The TPA-mediated effects on receptor tyrosine phos- 
phorylation, neutralization by orthovanadate, and TPA- 
induced RTK-PKC complex formation can also be 
demonstrated in NIH3T3 fibroblasts stably overexpressing 
these RTKs. RTK-PKC complex formation can also be 
induced by ligand addition in these cells. Ligand-induced 
RTK-PKC interaction must be regarded as a long-term 
effect. It is visible after 30 minutes and declines after 60 
minutes to undetectable levels, whereas TPA induces a 
more rapid and more sustained complex formation. This 
difference between ligand- and TPA-induced complex for- 
mation might be explained by the finding that growth 
factors transiently activate PLC~/, 46 which then leads to 
transient activation of PKC, whereas TPA directly and 
constitutively activates PKC. 

What is the biological function of this protein-protein 
interaction? An involvement of PKC in receptor downregu- 
lation has been suggested for many years. Exposing cells to 
phorbol esters results in decreased EGF binding and can be 
observed in most cell types. Immunofluorescence and 
electron-microscopic localization of these receptors showed 
that a significant percentage of receptors become internal- 
ized. 89 PKC-mediated internalization and degradation could 
clearly be demonstrated in 293 ceils. Overexpression of the 
RTK alone and subsequent treatment with EGF or TPA 
had no effect on receptor degradation, whereas coexpres- 
sion of PKCc~ resulted in a marked loss of radiolabeled 
receptors, but only upon TPA treatment. Determination of 
RTK-PKC complex formation showed that EGF was not 
able to induce this protein-protein interaction, whereas 
TPA induced receptor-PKC interaction, receptor phosphor- 
ylation, and simultaneously receptor degradation. As men- 
tioned earlier, EGF and TPA do not mediate receptor 
downregulation when the receptor is overexpressed alone, 
suggesting that the endogenous downregulation pathways 
are not sufficiently stimulated to activate degradation of 
these elevated amounts of receptors. Coexpression of 
PKCc~ and TPA treatment can restore this pathway, whereas 
EGF still has no effect. If the assumption is correct that the 
ligand-activated receptor activates PLC-/, which hydrolyzes 
PIP2 into DAG and IP3 and thereby activates PKC, then 
PLC~ should be the limiting factor in the latter case. 
Simultaneous overexpression of the receptor, PLC-y, and 
PKC should therefore restore the entire pathway and 

render it EGF-inducible. This is indeed the case. Coexpres- 
sion of PLC~ caused the HER1-2 receptor to be efficiently 
downregulated in response to EGF stimulation, an effect 
that was enhanced by PKCc~ co-overexpression. In the latter 
case, EGF- and TPA-induced receptor downregulation 
were indistinguishable, demonstrating that activation of 
PKC via receptor-activated PLC-/ and the corresponding 
second messengers was equivalent to direct activation of 
PKC by the artificial ligand TPA. 

In summary, these data show that PKC mediates short- 
and long-term effects on RTKs. The immediate effects, 

IP3 ~Ca2+ 

phospho- ~ dephospho- 

Internalization 

Fig 4. Model of PKC-mediated actions on RTKs. The rapid re- 
sponse, leading to RTK dephosphorylation, involves phosphotyrosine- 
specific phosphatases (PTPase) and is RTK-specific. The delayed 
effects are induced by translocation of PKC to the plasma membrane, 
resulting in binding and phosphorylation of RTKs on serine and 
threonine residues, and subsequently in internalization and degrada- 
tion of RTKs in general. 
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which appear to involve TPA-responsive, tyrosine-specific 
phosphatases, are RTK-specific and regulate the phosphor- 
ylation state of the receptors on tyrosine residues. In 
contrast, the long-term effects of PKC seem to be more 
general and are induced by translocation from the cytosol 
to the plasma membrane and formation of stable complexes 
with RTKs, concomitant with phosphorylation of these 
receptors followed by their internalization and degradation 
(K. Seedorf, M. Sherman, and A. Ullrich, in press) (Fig 4). 

CONCLUSION 

The RTK-mediated biological response is receptor- 
specific and cell-type-specific. There is increasing evidence 
that specificity of signal transduction is determined by 
various parameters, including specific RTK-substrate inter- 
action, affinity of RTKs for certain substrates, and tissue- 
specific substrate expression. In addition, the duration of 
signal transduction pathway activation clearly has an impor- 
tant impact on the response and determines, at least in 
PC12 cells, whether these cells proliferate or differentiate. 
The time factor might also determine why receptors that 
share the same substrates, for example, IR and IGF-I-R, 
mediate different responses: regulation of metabolism ver- 

sus growth. There are two main candidates that have the 
potential to regulate the duration of signal transduction at 
the receptor level: phosphotyrosine-specific phosphatases 
that dephosphorylate and thereby inactivate the signaling 
capacity of RTKs, and PKC. There are numerous data 
published demonstrating that PKC is capable of regulating 
RTK tyrosine content, affinity for ligands, and receptor 
downregulation, all parameters that have the potential of 
regulating the duration of signal transduction activation in 
a specific manner. 

Despite recent progress, many more pieces have to be 
added to the puzzle to fully understand these complex 
regulatory mechanisms. 
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